1. 1. Structural Fundamentals
  2. 2. Design & Engineering Comparison
    1. 2.1. 1. Structural Mechanics
    2. 2.2. 2. Bracing Systems
    3. 2.3. 3. Terrain Adaptability
  3. 3. Technical Specifications
    1. 3.1. Standard 60m Tower Comparison
  4. 4. Telecom Payload Optimization
  5. 5.  
  6. 6. Foundation Requirements
  7. 7. Cost Analysis
  8. 8. Deployment Recommendations
  9. 9. Critical Constraints
  10. 10. Innovations
  11. 11. Case Study: Philippines Typhoon Zone
  12. 12. Standards Compliance
  13. 13. Decision Guidelines

Here's a technical comparison and specification overview of 3-Leg vs. 4-Leg Lattice Telecommunication Towers – the structural workhorses of cellular networks, optimized for stability, payload, and terrain adaptability:


Structural Fundamentals

Parameter 3-Leg Lattice Tower 4-Leg Lattice Tower
Base Geometry Triangular Square/Rectangular
Typical Height 30–80m 40–120m+
Wind Resistance 180 km/h (112 mph) 220 km/h (137 mph)
Payload Capacity 1,500–3,500 kg 3,000–8,000 kg
Foundation Area 20–40m² 30–70m²
Material Use 15–30% less steel Higher redundancy

Design & Engineering Comparison

1. Structural Mechanics

Load Handling 3-Leg 4-Leg
Lateral Stability Moderate (dependent on bracing) Superior (redundant load paths)
Torsional Rigidity Lower (susceptible to twist) 40% higher resistance
Foundation Pressure Concentrated at leg points Evenly distributed
Failure Redundancy Single-point failure critical Multi-path load distribution

2. Bracing Systems

  • 3-Leg:

    • K-bracing or X-bracing

    • Max unsupported panel height: 6m

  • 4-Leg:

    • Redundant Warren/Vierendeel trusses

    • Max unsupported panel height: 8m

3. Terrain Adaptability

Condition 3-Leg Suitability 4-Leg Suitability
Sloped Ground Good (Δelev. <1.5m/leg) Excellent (Δelev. <3m/leg)
Soft Soil Requires pile foundations Spread footings often adequate
Seismic Zones Limited to Zone 3 (IBC) Certified for Zone 4
Ice Load Regions 25mm radial ice max. 50mm radial ice

lattice telecom tower 


Technical Specifications

Standard 60m Tower Comparison

Feature 3-Leg (60m) 4-Leg (60m)
Steel Weight 8–12 tons 12–18 tons
Leg Section 150mm Ø tubular (ASTM A500) 200mm Ø tubular (ASTM A572)
Bolt Grade ASTM A325 (M24–M30) ASTM A490 (M30–M36)
Climbing System External ladder Internal ladder + platforms
Installation Time 7–10 days 10–15 days

Telecom Payload Optimization

Configuration 3-Leg Limit 4-Leg Advantage
Antenna Quantity 6–9 sectors + 2 dishes 12–18 sectors + 4 dishes
5G mMIMO Support Up to 32T32R 64T64R + C-RAN hubs
Microwave Backhaul Max 0.6m dishes 1.2–2.4m dishes
Future Expansion Limited headroom 20% reserve capacity

 

Foundation Requirements

Type 3-Leg 4-Leg
Soil Bearing 200 kPa min. 150 kPa min.
Concrete Volume 15–25m³ 20–40m³
Anchor Bolts 3× groups (4 bolts/leg) 4× groups (4 bolts/leg)
Reinforcement 120 kg/m³ 150 kg/m³

 lattice cell tower


Cost Analysis

Component 3-Leg (60m) 4-Leg (60m)
Steel Fabrication $45,000–$75,000 $70,000–$110,000
Foundation $25,000–$45,000 $35,000–$65,000
Installation $30,000–$50,000 $45,000–$80,000
Total CAPEX $100k–$170k $150k–$255k
Lifespan 25–30 years 35–40 years

Deployment Recommendations

Use Case Preferred Type Why?
Urban Macro Sites 4-leg Heavier 5G mMIMO payloads + wind resilience
Rural Coverage 3-leg Cost efficiency; moderate antenna loads
Mountain Peaks 4-leg Superior torsional stability
Coastal Sites 4-leg Corrosion redundancy; high wind survival
Temporary Deploys 3-leg Faster install/teardown

Critical Constraints

Limitation 3-Leg Mitigation 4-Leg Mitigation
High-Wind Sway Tuned mass dampers Redundant bracing
Ground Settlement Pile foundations Grade beams + soil improvement
Seismic Motion Base isolation (Zone 0-3) Moment-resisting joints
Corrosion HDG + periodic inspection HDG + cathodic protection

Innovations

  • Hybrid Legs:

    1. 3-leg towers with 4th stub leg for critical sites

  • Robotic Assembly:

    1. Autonomous bolting drones (20% faster construction)

  • Smart Towers:

    1. IoT strain gauges + LiDAR deformation monitoring

  • Modular Upgrades:

    1. Stackable sections for height increases


4 leg lattice tower


Case Study: Philippines Typhoon Zone

  • Site: 70m tower in Cebu (230 km/h wind zone)

  • Comparison:

    Metric 3-Leg Result 4-Leg Result
    Wind Sway 1.8° (exceeded 1.5° limit) 0.7°
    Survival Damaged (Typhoon Rai) Operational
    Payload Downgraded to 6 antennas Supported 12 antennas
  • Conclusion: 4-leg chosen for all future sites


Standards Compliance

Standard 3-Leg 4-Leg
Structural TIA-222-H (Class 3) TIA-222-H (Class 4)
Wind/Ice ASCE 7-22 (Risk Cat II) ASCE 7-22 (Risk Cat III)
Seismic IBC 2021 (Zone 0-3) IBC 2021 (Zone 0-4)
Corrosion ISO 1461 (Class H) ISO 12944 (C5-M)

Decision Guidelines

Choose 3-Leg When:

  1. Budget is primary constraint

  2. Wind zones < 150 km/h

  3. Antenna loads ≤ 2,500 kg

  4. Stable bedrock terrain

Choose 4-Leg When:

  1. Hosting massive MIMO 5G/6G

  2. Coastal/typhoon regions

  3. Seismic Zone 3+

  4. Multi-operator (MOCN) shared infrastructure

 



Learn more at   www.alttower.com

 

Contact Us